1,535 research outputs found

    GRAIL, an omni-directional gravitational wave detector

    Get PDF
    A cryogenic spherical and omni-directional resonant-mass detector proposed by the GRAIL collaboration is described.Comment: 5 pages, 4 figs., contribution to proceedings GW Data Analysis Workshop, Paris, nov. 199

    Conductive Cooling of SDD and SSD Front-End Chips for ALICE

    Get PDF
    We present analysis, technology developments and test results of the heat drain system of the SDD and SSD front-end electronics for the ALICE Inner Tracker System (ITS). Application of super thermoconductive carbon fibre thin plates provides a practical solution for the development of miniature motherboards for the FEE chips situated inside the sensitive ITS volume. Unidirectional carbon fibre motherboards of 160 -300 micron thickness ensure the mounting of the FEE chips and an efficient heat sink to the cooling arteries. Thermal conductivity up to 1.3 times better than copper is achieved while preserving a negligible multiple scattering contribution by the material (less than 0.15 percent of X/Xo)

    Long-term prognostic risk in lower extremity peripheral arterial disease as a function of the number of peripheral arterial lesions

    Get PDF
    Background:  Although patients with peripheral artery disease (PAD) are known to have an increased risk of adverse prognosis, simple techniques to further risk-stratify PAD patients would be clinically useful. A plausible but unexplored factor to predict such risk would be greater disease burden, manifested as multiple lower extremity lesions. The aim of this study was to examine the association between having multiple versus isolated lower extremity PAD lesions and long-term prognosis. Methods and results:  A prospective cohort of 756 newly diagnosed PAD patients underwent duplex ultrasound testing to determine the number of lower extremity lesions. Cox regression models examined the independent association of lesion number (≥3 and 2 versus 1) and adverse prognosis (defined as a composite end point comprising first occurrence of either lower extremity amputation, admission for heart failure, nonfatal stroke, myocardial infarction, or unstable angina or mortality), adjusting for demographic and clinical risk factors. Analyses were replicated using an advanced Cox-based model for multiple events. A total of 173 patients (23%) had ≥3 lesions, 197 (26%) had 2 lesions, and 386 (51%) had 1 lesion. After a median follow-up of 3.2 years, patients with ≥3 lesions had an increased risk of experiencing a first adverse event (adjusted hazard ratio 1.60, 95% CI 1.08-2.38, P=0.020) and an increased risk of having multiple events (adjusted hazard ratio 1.53, 95% CI 1.08-2.18, P=0.018). Patients with 2 lesions had a prognosis similar to those with 1 lesion. Conclusions:  Among PAD patients, a greater number of lesions is associated with an increased risk of an adverse prognosis over 3 years of follow-up. Assessing the number of lower extremity lesions might serve as a simple risk-stratification tool at initial PAD diagnosis

    Measurement of mechanical vibrations excited in aluminium resonators by 0.6 GeV electrons

    Get PDF
    We present measurements of mechanical vibrations induced by 0.6 GeV electrons impinging on cylindrical and spherical aluminium resonators. To monitor the amplitude of the resonator's vibrational modes we used piezoelectric ceramic sensors, calibrated by standard accelerometers. Calculations using the thermo-acoustic conversion model, agree well with the experimental data, as demonstrated by the specific variation of the excitation strengths with the absorbed energy, and with the traversing particles' track positions. For the first longitudinal mode of the cylindrical resonator we measured a conversion factor of 7.4 +- 1.4 nm/J, confirming the model value of 10 nm/J. Also, for the spherical resonator, we found the model values for the L=2 and L=1 mode amplitudes to be consistent with our measurement. We thus have confirmed the applicability of the model, and we note that calculations based on the model have shown that next generation resonant mass gravitational wave detectors can only be expected to reach their intended ultra high sensitivity if they will be shielded by an appreciable amount of rock, where a veto detector can reduce the background of remaining impinging cosmic rays effectively.Comment: Tex-Article with epsfile, 34 pages including 13 figures and 5 tables. To be published in Rev. Scient. Instr., May 200

    First measurement of Ξc0\Xi_{\rm c}^0 production in pp collisions at s\mathbf{\sqrt{s}} = 7 TeV

    Full text link
    The production of the charm-strange baryon Ξc0\Xi_{\rm c}^0 is measured for the first time at the LHC via its semileptonic decay into e+Ξνe^+\Xi^-\nu_{\rm e} in pp collisions at s=7\sqrt{s}=7 TeV with the ALICE detector. The transverse momentum (pTp_{\rm T}) differential cross section multiplied by the branching ratio is presented in the interval 1 << pTp_{\rm T} << 8 GeV/cc at mid-rapidity, y|y| << 0.5. The transverse momentum dependence of the Ξc0\Xi_{\rm c}^0 baryon production relative to the D0^0 meson production is compared to predictions of event generators with various tunes of the hadronisation mechanism, which are found to underestimate the measured cross-section ratio.Comment: 22 pages, 6 captioned figures, 1 table, authors from page 17, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/412

    Constraining the magnitude of the Chiral Magnetic Effect with Event Shape Engineering in Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76$ TeV

    Full text link
    In ultrarelativistic heavy-ion collisions, the event-by-event variation of the elliptic flow v2v_2 reflects fluctuations in the shape of the initial state of the system. This allows to select events with the same centrality but different initial geometry. This selection technique, Event Shape Engineering, has been used in the analysis of charge-dependent two- and three-particle correlations in Pb-Pb collisions at sNN=2.76\sqrt{s_{_{\rm NN}}} =2.76 TeV. The two-particle correlator cos(φαφβ)\langle \cos(\varphi_\alpha - \varphi_\beta) \rangle, calculated for different combinations of charges α\alpha and β\beta, is almost independent of v2v_2 (for a given centrality), while the three-particle correlator cos(φα+φβ2Ψ2)\langle \cos(\varphi_\alpha + \varphi_\beta - 2\Psi_2) \rangle scales almost linearly both with the event v2v_2 and charged-particle pseudorapidity density. The charge dependence of the three-particle correlator is often interpreted as evidence for the Chiral Magnetic Effect (CME), a parity violating effect of the strong interaction. However, its measured dependence on v2v_2 points to a large non-CME contribution to the correlator. Comparing the results with Monte Carlo calculations including a magnetic field due to the spectators, the upper limit of the CME signal contribution to the three-particle correlator in the 10-50% centrality interval is found to be 26-33% at 95% confidence level.Comment: 20 pages, 6 captioned figures, 1 tables, authors from page 15, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/382

    A continuous-discontinuous model for crack branching

    Get PDF
    This is the peer reviewed version of the following article: Tamayo, E. [et al.]. A continuous-discontinuous model for crack branching. "International journal for numerical methods in engineering", 5 Octubre 2019, vol. 120, núm. 1, p. 86-104, which has been published in final form at https://doi.org/10.1002/nme.6125. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.A new continuous-discontinuous model for fracture that accounts for crack branching in a natural manner is presented. It combines a gradient-enhanced damage model based on nonlocal displacements to describe diffuse cracks and the extended finite element method (X-FEM) for sharp cracks. Its most distinct feature is a global crack tracking strategy based on the geometrical notion of medial axis: the sharp crack propagates following the direction dictated by the medial axis of a damage isoline. This means that, if the damage field branches, the medial axis automatically detects this bifurcation, and a branching sharp crack is thus easily obtained. In contrast to other existing models, no special crack-tip criteria are required to trigger branching. Complex crack patterns may also be described with this approach, since the X-FEM enrichment of the displacement field can be recursively applied by adding one extra term at each branching event. The proposed approach is also equipped with a crack-fluid pressure, a relevant feature in applications such as hydraulic fracturing or leakage-related events. The capabilities of the model to handle propagation and branching of cracks are illustrated by means of different two-dimensional numerical examples.Peer ReviewedPostprint (author's final draft

    Energy dependence of exclusive J/ψJ/\psi photoproduction off protons in ultra-peripheral p-Pb collisions at sNN\sqrt{s_{\rm{NN}}} = 5.02 TeV

    Full text link
    The ALICE Collaboration has measured the energy dependence of exclusive photoproduction of J/ψJ/\psi vector mesons off proton targets in ultra-peripheral p-Pb collisions at a centre-of-mass energy per nucleon pair sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV. The e+^+e^- and μ+μ\mu^+\mu^- decay channels are used to measure the cross section as a function of the rapidity of the J/ψJ/\psi in the range 2.5<y<2.7-2.5 < y < 2.7, corresponding to an energy in the γ\gammap centre-of-mass in the interval 40<Wγp<55040 < W_{\gamma\mathrm{p}}<550 GeV. The measurements, which are consistent with a power law dependence of the exclusive J/ψJ/\psi photoproduction cross section, are compared to previous results from HERA and the LHC and to several theoretical models. They are found to be compatible with previous measurements.Comment: 25 pages, 3 captioned figures, 3 tables, authors from page 19, published version, figures at http://alice-publications.web.cern.ch/node/455

    Measurement of the production of charm jets tagged with D0^{0} mesons in pp collisions at s\sqrt{s}= 7 TeV

    Full text link
    The production of charm jets in proton-proton collisions at a center-of-mass energy of s=7\sqrt{s}=7 TeV was measured with the ALICE detector at the CERN Large Hadron Collider. The measurement is based on a data sample corresponding to a total integrated luminosity of 6.236.23 nb1{\rm nb}^{-1}, collected using a minimum-bias trigger. Charm jets are identified by the presence of a D0^0 meson among their constituents. The D0^0 mesons are reconstructed from their hadronic decay D0^0\rightarrowKπ+^{-}\pi^{+}. The D0^0-meson tagged jets are reconstructed using tracks of charged particles (track-based jets) with the anti-kTk_{\mathrm{T}} algorithm in the jet transverse momentum range 5<pT,jetch<305<p_{\rm{T,jet}}^{\mathrm{ch}}<30 GeV/c{\rm GeV/}c and pseudorapidity ηjet<0.5|\eta_{\rm jet}|<0.5. The fraction of charged jets containing a D0^0-meson increases with pT,jetchp_{\rm{T,jet}}^{\rm{ch}} from 0.042±0.004(stat)±0.006(syst)0.042 \pm 0.004\, \mathrm{(stat)} \pm 0.006\, \mathrm{(syst)} to 0.080±0.009(stat)±0.008(syst)0.080 \pm 0.009\, \rm{(stat)} \pm 0.008\, \rm{(syst)}. The distribution of D0^0-meson tagged jets as a function of the jet momentum fraction carried by the D0^0 meson in the direction of the jet axis (zchz_{||}^{\mathrm{ch}}) is reported for two ranges of jet transverse momenta, 5<pT,jetch<155<p_{\rm{T,jet}}^{\rm{ch}}<15 GeV/c{\rm GeV/}c and 15<pT,jetch<3015<p_{\rm{T,jet}}^{\rm{ch}}<30 GeV/c{\rm GeV/}c in the intervals 0.2<zch<1.00.2<z_{||}^{\rm{ch}}<1.0 and 0.4<zch<1.00.4<z_{||}^{\rm{ch}}<1.0, respectively. The data are compared with results from Monte Carlo event generators (PYTHIA 6, PYTHIA 8 and Herwig 7) and with a Next-to-Leading-Order perturbative Quantum Chromodynamics calculation, obtained with the POWHEG method and interfaced with PYTHIA 6 for the generation of the parton shower, fragmentation, hadronisation and underlying event.Comment: 29 pages, 8 captioned figures, 3 tables, authors from page 24, published version, figures at http://alice-publications.web.cern.ch/node/525

    Measurement of pion, kaon and proton production in proton-proton collisions at s=7\sqrt{s}=7 TeV

    Full text link
    The measurement of primary π±\pi^{\pm}, K±^{\pm}, p and p\overline{p} production at mid-rapidity (y<|y| < 0.5) in proton-proton collisions at s=7\sqrt{s} = 7 TeV performed with ALICE (A Large Ion Collider Experiment) at the Large Hadron Collider (LHC) is reported. Particle identification is performed using the specific ionization energy loss and time-of-flight information, the ring-imaging Cherenkov technique and the kink-topology identification of weak decays of charged kaons. Transverse momentum spectra are measured from 0.1 up to 3 GeV/cc for pions, from 0.2 up to 6 GeV/cc for kaons and from 0.3 up to 6 GeV/cc for protons. The measured spectra and particle ratios are compared with QCD-inspired models, tuned to reproduce also the earlier measurements performed at the LHC. Furthermore, the integrated particle yields and ratios as well as the average transverse momenta are compared with results at lower collision energies.Comment: 33 pages, 19 captioned figures, 3 tables, authors from page 28, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/156
    corecore